Asp.net Core Identity

install
Microsoft.AspNetCore.ldentity.EntityFrameworkCore;

bez DbSet ne se dodava tabela vo baza

create user asynnc

sign in async

site metodi so async se koristat so await napred za da ceka da ne se sluci user da e sekogas null
koga ke dojde do ifot

var user= await userManager.FindByldAsync(addUserToRole.Userld);
var role = await roleManager.FindByNameAsync(addUserToRole.roleName);

if (user!=null && role != null)

{
var rez = await userManager.AddToRoleAsync(user, role.Name);
return RedirectToAction("Index", "Home");

Identity

1.Adding and Configuring database

var con_string = configuration["ConnectionStrings:MyConnectionString"];
services.AddDbContext<AppDbContext>(options =>
options.UseSqlServer(configuration.GetConnectionString("MyConnectionString")));

2. to add idnetity services in DIC
services.Addldentity<UserldentityUser, IdentityRole>(setupAction =>

{

setupAction.Password.RequiredLength = 4;
setupAction.Password.RequiredUniqueChars = 1;
setupAction.User.RequireUniqueEmail = true;

}).AddEntityFrameworkStores<AppDbContext>();//vo koja baza da se cuvaat
//In some cases, the call to AddAuthentication is automatically made by other extension methods.
For example, when using ASP.NET Core Identity, AddAuthentication is called internally.
OR

services.Configure<lidentityOptions>(options =>

{
options.Password. RequiredLength = 19;
options.Password.RequiredUnigueChars = 3;
options.Password. RequireNonAlphanumeric = falsze;

1

https://docs.microsoft.com/en-us/aspnet/core/security/authentication/identity?view=aspnetcore-3.1

3.Your app DbContext(objecto to acess datatbase) must inherit from
IdentityDbContext

if the IdentityUser is cutom defined in another class it must be specefied as generic
otherwise the migrations will be empty it will not detect the new custom properties

public class AppDbContext :ldentityDbContext<UserldentityUser>

{
/1 1dentityDbContext has DbSets taht create the 7 tables in step 6
// DbSet<Employee> Employees { get; set; }

public AppDbContext(DbContextOptions<AppDbContext> options): base(options)
{
}

protected override void OnModelCreating(ModelBuilder builder)

{
base.OnModelCreating(builder);//mora base bidejki vo OnModelCreating na

IdentityDbContext se pravat mapiranja za da modelot se mapira vo bazata

P}

4. for custom IdentityUser
public class UserldentityUser : IdentityUser

{

public string Description { get; set; }//for more custom properties

}

5.Configure middleware pipeline

UseRouting()->Will try to select a route to execute but doesn't actually execute the route. It will
select the endpoint for the current request.

UseAuthentication()->Populates the User(code that runs before this won't have a valid
HttpContext.User property)

UseAuthorization()->Will look at the populated user and the current endpoint to determine if
an authorization policy needs to be applied.

UseEndpoints()->Executes the current endpoint

6. Migrations
add-migration
update-Dtabase

7.User Manimulation UserManager< class represent the user > SigninManager<class
represent the user>
Generic parameter that represent the user it manages

UserManager<IldentityUser>
» CreateAsync

SigninManager<IdentityUser>
» SigninAsync

» DeleteAsync
» UpdateAsync
~ Etc...

» SignOutAsync
» IsSignedin
» Etc...

private readonly UssrManager<Identitylser> userManager;
private readonly SignInManager<IdentityUser> signInManager;

public AccountController(UssrManager<Identitylser> userManager,
SignInManager<Identitylsers signInManager)

{
this.userManager = userManager;
this.signInManager = signInManager;
T
8.Razor

@* *@ //comments
Role based authorization check in views in asp.net core mvc

@using Microsoft.AspNetCore.ldentity
@inject SignInManager<ldentityUser> SigninManager
@if(SignInManager.IsSignedin(User) && User.IsInRole("Admin"))
{
}

Claims based authorization check in views in asp.net core mvc

@using Microsoft.AspNetCore.Authorization

@inject IAuthorizationService authorizationService;

Pass the user and the name of the policy as parameters to AuthorizeAsync() method

of IAuthorizationService. Succeeded property returns true if the policy is satisfied, otherwise false.
@if ((await authorizationService.AuthorizeAsync(User, "EditRolePolicy")).Succeeded)

{

}

9. Authentication
1. An authenticated user .
makes a request to /recipes. e

1. The browser sends the :
authentication cookie 1
with the request. [Static file J

4. The authentication middleware
. ? calls the Authentication services

= HttpContext -UEEP[which deserialize the user

principal from the cookie

and confirms it's valid.

i. Any middleware before the L

wthentication middleware Authentication = Authentication
reat the request as though middieware - services
t is unauthenticated. ’)
HttpContext . Usexﬁ
6. All middleware after the .b
authentication middleware : 5. The HttpContext.User property
e the "'q"f“t s rnm is set to the deserialized principal,
the authenticated user. [MVC middleware] and the request is now authenticated.

Browsers will automatically

send this cookie with all requests made to your app, so you don't need to provide your

password with every request.

by default asp.net core identity when it is not specefied it uses cookie authentication if it's specefied
you shoud include addCookie

services.AddAuthentication().AddCookie();

A session cookie is created and stored within the session instance of the browser. A session cookie
does not contain an expiration date and is permanently deleted when the browser window is closed.
A persistent cookie on the other hand is not deleted when the browser window is closed. It usually
has an expiry date and deleted on the date of expiry.

e LoginPath - this is the relative path requests will be redirected to when a user attempts to access
a resource but has not been authenticated.
e AccessDeniedPath - this is the relative path requests will be redirected to when a user attempts

to access a resource but does not pass any authorization policies for that resource.

// raboti za mestenje na LoginPath i AccessDeniedPath
services.ConfigureApplicationCookie(options =>

{

options.LoginPath = new PathString("/Account/fffff/");
options.AccessDeniedPath = new PathString("/Account/ddddd/");

s

//ne raboti za mestenje na LoginPath i AccessDeniedPath

services.AddAuthentication().AddCookie(
config => {
config.LoginPath = new PathString("/Account/fffff/");
config.AccessDeniedPath = new PathString("/Account/ddddd/");

)s

[Authorize] is used just to authenticate the user

Authentication is the process of determining a user's identity

schemes should be used to authenticate the user

Specifying the default scheme results in the HttpContext.User property being set to that identity. If
that behavior isn't desired, disable it by invoking the parameterless form of AddAuthentication.

For example, the following code registers authentication services and handlers for cookie and JWT
bearer authentication schemes:

services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
.AddJwtBearer(JwtBearerDefaults.AuthenticationScheme, options =>

Configuration.Bind("JwtSettings", options))
.AddCookie(CookieAuthenticationDefaults.AuthenticationScheme, options =>

Configuration.Bind("CookieSettings", options));

https://aspnetcore.readthedocs.io/en/stable/security/authorization/policies.html

The AddAuthentication parameter JwtBearerDefaults.AuthenticationScheme is the name of the
scheme to use by default when a specific scheme isn't requested.

services.AddAuthentication()
.AddCookie(options => {
options.LoginPath = "/Account/Unauthorized/";
options.AccessDeniedPath = "/Account/Forbidden/";
)
.AddJwtBearer(options =>{
options.Audience = "http://localhost:5001/";
options.Authority = "http://localhost:5000/";

i

In the preceding code, two authentication handlers have been added: one for cookies and one for
bearer.

Selecting the scheme with the Authorize attribute

[Authorize] attribute means you just need to authenticate(who are you)
The [Authorize] attribute specifies the authentication scheme or schemes to use regardless of
whether a default is configured. For example:
private const string AuthSchemes =
CookieAuthenticationDefaults.AuthenticationScheme + "," +
JwtBearerDefaults.AuthenticationScheme;

[Authorize(AuthenticationSchemes = AuthSchemes)]
public class MixedController : Controller
// Requires the following imports:
/1 using Microsoft.AspNetCore.Authentication.Cookies;
/1 using Microsoft.AspNetCore.Authentication.JwtBearer;

In the preceding example, both the cookie and bearer handlers run and have a chance to create and
append an identity for the current user. By specifying a single scheme only, the corresponding
handler runs.

[Authorize(AuthenticationSchemes =
JwtBearerDefaults.AuthenticationScheme)]
public class MixedController : Controller

In the preceding code, only the handler with the "Bearer" scheme runs. Any cookie-based identities
are ignored.

duplicate schemas name
services.AddAuthentication(JwtBearerDefaults.AuthenticationScheme)
.AddJwtBearer(options =>

{
by
.AddjwtBearer("AzureAD", options =>
{
i
}

Only one JWT bearer authentication is registered with the default authentication
scheme JwtBearerDefaults.AuthenticationScheme. Additional authentication has to be registered
with a unique authentication scheme.

authorization with beerer token only
[Authorize(AuthenticationSchemes =JwtBearerDefaults.AuthenticationScheme)]

Selecting the scheme can be done with policies

If you prefer to specify the desired schemes in policy, you can set
the AuthenticationSchemes collection when adding your policy:

services.AddAuthorization(options =>

{
options.AddPolicy("Over18", policy =>

{

policy.AuthenticationSchemes.Add(JwtBearerDefaults.AuthenticationScheme);
policy.RequireAuthenticatedUser();

policy.Requirements.Add(new MinimumAgeRequirement());

9%
i

In the preceding example, the "Over18" policy only runs against the identity created by the "Bearer"
handler. Use the policy by setting the [Authorize] attribute's Policy property:

[Authorize(Policy = "Over18")]
public class RegistrationController : Controller

10.Authorization

/11 adding Filters globally
services.AddControllersWithViews(configure=> {
var policy = new AuthorizationPolicyBuilder()
.RequireAuthenticatedUser() ///// adding Authorization(the user must be logged in)
.AddRequirements(new SomeClass) //za custom SomeClass koja ke bide Requirement odnosno ke
nasledi od IAuthorizationRequirement
.Build();

https://docs.microsoft.com/en-us/aspnet/core/security/authorization/policies?view=aspnetcore-3.1

configure.Filters.Add(new AuthorizeFilter(policy)); /// adding Filters globally
3

//za da se iskoristat policy treba [Autthorize("policy name")]
services.AddAuthorization(configure =>

{
configure.AddPolicy("CanEnterSecurity", policyBuilder =>

policyBuilder.RequireClaim("BoardingPassNumber")
.RequireRole("Admin") //the user must have roleName Admin

.RequireClaim("key", "value") //The user must have the specified claim. Optionally, with one
of the specified values.

.RequireClaim("key", "value", "value1", "value2") //A list of allowed values can also be
specified. the user must have key claim with a value of claim1 or claim2, or claim3

.RequireAuthenticatedUser() //The required user must be authenticated. Creates a policy
similar to the default[Authorize] attribute, where you don't set a policy

.RequireUserName("username") //The user must have the specified username.

.RequireAssertion(context => //Executes the provided lambda function, which returns a

bool, indicating whether the policy was satisfied.
context.User.IsInRole("Admin") &&
context.User.HasClaim(claim => claim.Type == "Edit Role" && claim.Value ==

"true") | |
context.User.IsInRole("Super Admin"))

.Requirements(new ManageAdminRolesAndClaimsRequirement()) //custom requirement

AuthenticationSchemes.Add(CookieAuthenticationDefaults.AuthenticationScheme)//Selecting the
scheme can be done with policies only this policy only runs against the identity created by the cookie
authentication

options.InvokeHandlersAfterFailure = false; // If you do not want the rest of the handlers to be
called, when a failure is returned, set InvokeHandlersAfterFailure property to false. The default

is true.

K

ASP.net core supports role based, claim based and policy based authorization

When the Authorize attribute is used in it's simplest form, without any parameters, it only checks if
the user is authenticated. This is also called simple authorization.

Role-based

In ASP.NET Core, a Role is a Claim
with Type Role

Claims based authorization is relatively new and is the recommended approach. With it we
can also use claims from external identity providers like Facebook, Google, Twitter etc. We will
discuss using external identity providers and the claims they provide in our upcoming videos.

Role based authorization is still supported in asp.net core for backward compatibility. While
Claims based authorization is the recommended approach, depending on your application
authorization requirements you may use role based authorization, claims based authorization or
a combination of both.

Role-based authorization checks can be applied either against a controller or an action within a
controller.

Role Based Authorization Example

Only those users who are members of the Administrator role can access the actions in the
AdministrationController

[Authorize(Roles = "Administrator")]

public class AdministrationController : Controller
{

}

Multiple Roles Example

Multiple roles can be specified by separating them with a comma.The actions in this controller are
accessible only to those users who are members of either Administrator or User role.

[Authorize(Roles = "Administrator,User")]

public class AdministrationController : Controller
{

}

Multiple Instances of Authorize Attribute

To be able to access the actions in this controller, users have to be members of both - the
Administrator role and the User role.

[Authorize(Roles = "Administrator")]
[Authorize(Roles = "User")]
public class AdministrationController : Controller

{
}

Role Based Authorization Check on a Controller Action

Members of the Administrator role or the User role can access the controller and the ABC action, but
only members of the Administrator role can access the XYZ action.The action Anyone() can be
accessed by anyone inlcuding the anonymous users as it is decorated with AllowAnonymous
attribute.

[Authorize(Roles = "Administrator, User")]
public class AdministrationController : Controller

{
public ActionResult ABC()

{
}

[Authorize(Roles = "Administrator")]
public ActionResult XYZ()

{
}

[AllowAnonymous]
public ActionResult Anyone()

{
}

claim-based

claims are informations about the user

There are 2 simple steps to implement Claims based authorization in asp.net core.

Create a claims policy

Use the policy on a controller or a controller action

Claims are policy based. We create a policy and include one or more claims in that policy. We then
need to register the policy. Creating and registering a claims policy is typically done in one step

in ConfigureServices() method of the Startup class.

services.AddAuthorization(options =>

{
options.AddPolicy("DeleteRolePolicy",

policy => policy.RequireClaim("Delete Role"));
)%
The options parameter type is AuthorizationOptions
Use AddPolicy() method to create the policy
The first parameter is the name of the policy and the second parameter is the policy itself
To satisfy this policy requirements, the logged-in user must have Delete Role claim
Using Claims Policy for Authorization Checks

The policy can then be used on a controller or a controller action.

[HttpPost]
[Authorize(Policy = "DeleteRolePolicy")]
public async Task<IlActionResult> DeleteRole(string id)

{
// Delete Role

Adding Multiple Claims to Policy
services.AddAuthorization(options =>
{
options.AddPolicy("DeleteRolePolicy",
policy => policy.RequireClaim("Delete Role")
.RequireClaim("Create Role")

)

you can also specified a value that needs to be satisfied

RequireClaim(claim, values) The user must have the specified claim. Optionally, with one of the specified
values.

// Add all the claims
List<Claim> claims = new List<Claim>() {

new Claim("key","value"),

new Claim("key","value"),

new Claim("key","value"),

new Claim("key","value")

1

result = await userManager.AddClaimsAsync(user, claims);

// Get all the user existing claims and delete them

var claims = await userManager.GetClaimsAsync(user);

var result = await userManager.RemoveClaimsAsync(user, claims);

policy-based
A policy defines the requirements you must meet in order for a request to be authorized.

services.AddAuthorization(configure =>

{
configure.AddPolicy("CanEnterSecurity", policyBuilder =>

policyBuilder.RequireClaim("BoardingPassNumber")
.RequireRole("Admin")//the user must have roleName Admin

.RequireClaim("key", "value")//The user must have the specified claim. Optionally, with one
of the specified values.

.RequireClaim("key", "value", "value1", "value2")//A list of allowed values can also be
specified. the user must have key claim with a value of claim1, claim2, or claim3

.RequireAuthenticatedUser()//The required user must be authenticated. Creates a policy
similar to the default[Authorize] attribute, where you don't set a policy

.RequireUserName("username")//The user must have the specified username.

.RequireAssertion(context => //Executes the provided lambda function, which returns a
bool, indicating whether the policy was satisfied.
context.User.IsInRole("Admin") &&
context.User.HasClaim(claim => claim.Type == "Edit Role" && claim.Value ==
"true") | |
context.User.IsInRole("Super Admin"))

.Requirements(new ManageAdminRolesAndClaimsRequirement())//custom requirement

.AuthenticationSchemes.Add(CookieAuthenticationDefaults.AuthenticationScheme)//Selecting the
scheme can be done with policies only this policy only runs against the identity created by the cookie
authentication

): 3

Custom authorization requirement

Authorization Policy

‘ |AuthorizationRequirement

Requirement AND Requirement

OR

Handler

| AuthorizationHandler<T> where T is the Requirement

For the policy to be satisfied, every
requirement must be satisfied.

X —— =
' v i t irement rement

if any of the handlers are satisfied,
the requirement is satisfied.

Handler Handler Handler
28, OR I8 OR ... OR M

Figure 15.5 For a policy to be satisfied, every requirement must be satisfied. A requirement is
satisfied if any of the handlers are satisfied.

Custom authorization requirements and Custom authorization handlers. These are very useful and
powerful concepts that help us implement even the most complex authorization needs of an
application.

Listing 15.4 Adding an authorization policy using AuthorizationPolicyBuilder

publiec void ConfigureServices (IServiceCollection services)

Calls AddAuthorization
{ to configure
services.Addiuthorizationi{options == - AuthorizationOptions
{
options.AddPolicy | <+——— Adds a new policy
"CanEnterSecurity", <+——— Provides a name for the policy
policyBuilder => policyBuilder
.RequireClaim("BoardingPassNumher")) ; Defines the policy
¥hz requirements using
/{ Bdditional service configuration A.uﬂmrlzatmnl'ullqﬁullder
}

When a user attempts to execute the AirportLounge action method, the authorization filter added
by the [Authorize] attribute validates the "CanAccessLounge" policy. It loops through all of the
requirements in the policy, and all of the handlers for

each requirement, calling the HandleRequirementAsync method for each.

1. Create requirements

public class ManageAdminRolesAndClaimsRequirement : [AuthorizationRequirement

{
Listing 15.6 The parameterizéd MinimumAgeRequirement

public class MinimumAgeReguirement : IAuthorizationRegquirement -

: The interface
. & & . . g 3 identifies the
public MinimumAigeRegquirement (int minimumAge) - The minimum st 55 30
; . L age is authorization
MinimumAge = minimumMge; prmril:led requirement.
} when the
publie int MinimumAge { get; } = requirement
} is created.

Handlers can use the exposed
minimum age to determine whether
the requirement is satisfied.

}
2. Create the Handler

public class CanEditOnlyOtherAdminRolesAndClaimsHandler :
AuthorizationHandler<ManageAdminRolesAndClaimsRequirement>

Listing 15.8 FregquentFlyerHandler for AllowedInLoungeRegquirement

public class FreguentFlyerHandler : The hal:ldle.r implements
AuthorizationHandler<AllowedInLoungeReguirement> <t— AuthorizationHandler<T>.
{

protected override Task HandleRequirementhAsynec| -—+——

You must override the abstract
HandieRequirementAsync method.

448 CHAPTER 15 Awthorization: securing your application
The context contains details
such as the ClaimsPrincipal
AutherizationHandlerContext context, - user object.
The e Al lowedInLoungeReguirement reguirement)
requirement) :
to handle if (context.User.HasClaim({"FrequentFlyerClass", "Gold")) =
{
context . Succeed (requirement) ; < Checks whether the user
1 has the FrequentFlyerClass

claim with the Gold value
return Task.CompletedTask;

f o If the user had the necessary claim
} If the requirement wasn't i x
satisfied, do nothing. then mark the requirement as

satisfied by calling Succeed.

protected override Task HandleRequirementAsync(AuthorizationHandlerContext context,
ManageAdminRolesAndClaimsRequirement requirement)
{

context.Succeed(requirement); // Succeed() method specifies that the requirement is successfully
evaluated.

return Task.CompletedTask; //we return Task.CompletedTask and the access is not authorised.
CREATING AUTHORIZATION HANDLERS TO SATISFY YOUR REQUIREMENTS

Authorization handlers contain the logic of how a specific TRuthorizationRequirement
can be satistied. When executed, a handler can do one of three things:

* Mark the requirement handling as a success
» Not do anything
» Explicitly fail the requirement

Handlers should implement Authorizationdandler<T>, where Tis the tvpe of requirement
I:hﬂ' handle. For example, the following histing shows a handler for AllowedInLounge-

Requirement that checks whether the user has a claim called FrequentFlyerClass with a
value of Gold.

}
3. Create the policy
policy.AddRequirements(new ManageAdminRolesAndClaimsRequirement()));

e] B ke o o i e e B) o e ke B 8 o T i e e] e R Bt W ARt Tk § |

options.AddPolicy(|

"CanAccessLounge”, | Adds a new
policyBuilder => policyBuilder.AddRegquirements (policy for the
new MinimumAgeRequirement(18), airport lounge,
new AllowedInLoungeReguirement () called
CanAccessLounge

Yiz
Yz
ff Additional service configuration
} Adds an instance of each
lAuthorizationRequirement object

4. Add the Handler to Dependency Injection Container
services.AddSingleton<IAuthorizationHandler,

CanEditOnlyOtherAdminRolesAndClaimsHandler>();

sarvices
LAddSingleton<IAuthorizationHandler, BannedFromLoungaHandlers();

Services
.AddSingleton<IAuthorizationHandler, IsAirlineEmployeaHandler:>();

/4 Additional serviece configuration

For this app, the handlers don’t have any constructor dependencies, so I've registered
them as singletons with the container. If your handlers have scoped or transient
dependencies (the EF Core DbContext, for example), then you might want to register

them as scoped instead, as appropriate.

5. Apply the policy
[Authorize(Policy = "EditRolePolicy")]

Authorization Handler Returns

What can Authorization Handler Return

Success - context.Succeed()

Failure - context.Fail()

Nothing - Task.CompletedTask

It's very important we understand what the handler returns and the impact it can have on other
handlers. If you have multiple handlers for a requirement

o Failure takes precedence over success. This means

o When one of the handlers return failure, the policy fails even if the other handlers

return success

o If none of the handlers return an explicit success, the policy will not succeed.

o For a policy to succeed, an explicit success must be returned from one of the handlers, and

no other handler must return an explicit failure

o In general, do not return failure from a handler, as other handlers for the same requirement
may succeed.

o Only return an explicit failure, when you want to guarantee the failure of the policy even
when the other handlers succeed.

o By default, all handlers are called, irrespective of what a handler returns (success, failure or
nothing). This is because in the other handlers, there might be something else going on besides
evaluating requirements, may be logging for example.

o If you do not want the rest of the handlers to be called, when a failure is returned,
set InvokeHandlersAfterFailure property to false. The default is true.

Set InvokeHandlersAfterFailure property to false
o services.AddAuthorization(options =>

options.AddPolicy("EditRolePolicy", policy =>
policy.AddRequirements(new ManageAdminRolesAndClaimsRequirement()));

options.InvokeHandlersAfterFailure = false; // If you do not want the rest of the handlers to be
called, when a failure is returned, set InvokeHandlersAfterFailure property to false. The default
is true. });

Resource Base Authorization
In order to find out who created the Recipe, you must first load it from the database.

Create a policy in ConfigureServices by calling AddAuthorization()
Define one or more requirements for the policy

Define one or more handlers for each requirement

Register the handlers in the DI container

public void ConfigureServices(IServiceCollection services)

{

services.AddAuthorization(options => {
options.AddPolicy("CanManageRecipe", policyBuilder =>
policyBuilder.AddRequirements(new IsRecipeOwnerRequirement()));
3

}

Listing 15.14 Using TAuthorizationService for resource-based authorization

public class RecipeController : Controller
{
private IAuthorizationService _authService

public RecipeController{IfuthorizationService authService) lAuthorizationService

{ is injected into the
_authService = authService; Only authenticated :!:i::gc;:“m:tur
! users should be
[Buthorize] o allowed to edit recipes.
public async Task<IActionBesult> Edit({int id) Load the recipe
{ from the database.
var recipe = _service.GetRecipe(id);
wvar authResult = awalt _authService
JAuthorizehsyne (User, recipe, "CanManageRecipe"); Calls
lAuthorizationService,
if (lauthResult . Succeeded) prﬂiding
i If authorization failed, ClaimsPrinicipal,
return new ForbidResult|(); | returns a 403 resource, and the
} Forbidden result Fuli:r name

If authorization was successful,

return View(recipe); ‘—‘
continues the action method

}
Resource-based authorization handlers are essentially the same as the authorization
handler implementations you saw in section 15.4.2. The only difference is that the
handler also has access to the resource being authorized.
To create a resource-based handler, you should derive from the

AuthorizationHandler<TRequirement, TResource> base class, where TRequirement is the type of

requirement to handle, and TResource is the type of resource that you provide when
calling IAuthorizationService.

Listing 15.15 IsRecipeOwnerHandlar for resource-based authorization

publie class IsRecipefwnerHandler :
AuthorizationHandler«<IsRecipeOwnerRequirement, Recipes

{
private readenly UserManager<ipplicationUzer> _userManager;

Injects aninstance | public IsRecipeOwnerHandler| Implements the
UserManager<ApplicationUser> userManager) necessary base class,
UserManager<T> | ¢ specilying the
class using DI _userManager = userManager; requirement and
3 resource type
Controllimg arcess with resowrce-based autherization 4
protected override async Task HandleReguirementAsyne |
AuthorizationHandlerContext contbext,
IgRecipeCunerfequirement regquirement,
i~ Recipe resgource)
As well as the
context and ’ :
uirement, var applser = awailt _userManager . GetUaerfaync(context.User});
g v ko if jappUser == null} f
you udith! £ I you aren't authenticated,
‘e pr: lnlid! < - resan ey then appUser will be null.
}
if (resource. CreatedById == applser.Id) < Checks whether the
{ . current user created
A contaxt Succesd (requirement) ; the Recipe by checking
i If the user created the document, the CreatedByld
} Succeed the requirement; property

otherwise, do nothing.

Role Manager
RoleManager < class represent the role >

Asp.Net Core Identity Tables

AspNetUsers
The user profile table itself. This is where ApplicationUser is serialized to. We'll take a closer look at

this table shortly.

AspNetUserClaims
The claims associated with a given user. A user can have many claims, so it's modeled as a many-to-
one relationship.

AspNetUserLogins and AspNetUserTokens
These are related to third-party logins.When configured, these let users sign in with a Google or
Facebook account(for example), instead of creating a password on your app.

AspNetUserRoles, AspNetRoles, and AspNetRoleClaims

These tables are somewhat of a legacy left over from the old role-based permission model of the
pre-.NET 4.5 days, instead of the claims-based permission model. These tables let you

define roles that multiple users can belong to. Each role can be assigned a number of claims. These
claims are effectively inherited by a user principal when

they are assigned that role.

AspNetRoleClaims

?

AspNetRoles

Roles that you have created

AspNetUserRoles
many to many replationship between AspNetUsers and AspNetRoles

Register User

[HttpPost]
[AllowAnonymous]
public async Task<IlActionResult> Register(RegisterViewModel registerView)
{
if (ModelState.IsValid)
{
var user = new UserldentityUser { Email = registerView.Email, UserName =
registerView.Name };

var result = await userManager.CreateAsync(user, registerView.Password);//checks if user is
valid and create it in database

if (result.Succeeded)//if user is successfully created sign in

{
await signinManager.SigninAsync(user, false);///Updates the HttpContexxt.User principle

and sets a cookie containing the serilized principle

return RedirectToAction("Index", "Home");

}
foreach (var error in result.Errors)
{
ModelState. AddModelError("", error.Description.ToLower());
}
}

return View(registerView);

Login User

[HttpPost]
[AllowAnonymous]
public async Task<IActionResult> Login(LoginViewModel loginView,string returnUrl)

{

if (ModelState.IsValid)
{

var result = await signinManager.PasswordSignInAsync(loginView.Email,
loginView.Password, false, false);//the sign in succeeded so the HttpContext.User and authentication
cookie have been set

if (result.Succeeded)

{
if(!string.IsNullOrEmpty(returnurl) && Url.IsLocalUrl(returnuUrl))
return LocalRedirect(returnUrl);
else
return RedirectToAction("Index","Home");
}
else
{
ModelState.AddModelError("", "sign in failed");
return View(loginView);
}
}
else
{
return View(loginView);
}

Logout User

[HttpPost]
public async Task<IActionResult> Logout()
{
await signinManager.SignOutAsync();// Replaces the HttpContexxt.User with an anonymous
principle and deletes the authentication cookie

return RedirectToAction("Index", "Home");

Create Role
[HttpPost]
[Authorize(Roles = "Admin")]
public IActionResult CreateRole(CreateRoleViewModel model)

{
if (ModelState.IsValid)
{
var role = new IdentityRole(model.RoleName);
var result = roleManager.CreateAsync(role);
if (result.Result.Succeeded)
{
return RedirectToAction("Index", "Home");
}
foreach (var error in result.Result.Errors)
{
ModelState.AddModelError("", error.Description.ToLower());
}
¥

return View(model);

Add User To Role

[HttpPost]

[Authorize(Roles = "Admin")]

public async Task<IActionResult> AddUserToRole(AddUserToRoleViewModel
addUserToRole)

{

var user = await userManager.FindByIdAsync(addUserToRole.UserId);

var role = await roleManager.FindByNameAsync(addUserToRole.roleName);

var isAlreadyInRole = await userManager.IsInRoleAsync(user, role.Name);//if
the user already has the role

if (user != null && role != null & !isAlreadyInRole)

{
var rez = await userManager.AddToRoleAsync(user, role.Name);
if(rez.Succeeded)
return RedirectToAction("Index", "Home");
foreach (var error in rez.Errors)
{
ModelState.AddModelError("", error.Description);
}
return View(addUserToRole);
}
else
{

ModelState.AddModelError("", $"user {user} role {role} already has the
role {isAlreadyInRole}");
return View(addUserToRole);
}

Client Side Validation

ASP.NET Core Client Side Validation

jquery.validate.js

jquery.validate.unobtrusive.js

<link href="~/lib/twitter-bootstrap/css/bootstrap.css” rel="stylesheet" />

<script src="~/1lib/jquery/jquery.js"></script>

<script src="~/lib/jquery-validate/jquery.validate.js"></script>

<script src="~/1lib/jquery-validation-
unobtrusive/jquery.validate.unobtrusive.js"></script>

<script src="~/lib/twitter-bootstrap/js/bootstrap.js"></script>

/Il libman.json
{
"version": "1.0",
"defaultProvider": "cdnjs",
"libraries™: [
{
"library": "jquery@3.5.1",
"destination": "wwwroot/lib/jquery/"
h
{
"library": "twitter-bootstrap@4.5.0",
"destination": "wwwroot/lib/twitter-bootstrap/"
}I
{
"library": "jquery-validate@1.19.1",
"destination": "wwwroot/lib/jquery-validate/"
}

’

{
"library": "jquery-validation-unobtrusive@3.2.11",
"destination": "wwwroot/lib/jquery-validation-unobtrusive/"}]}

Make sure the following client-side validation libraries are loaded in the order specified jquery.js
jquery.validate.js jquery.validate.unobtrusive.js

Unobtrusive Validation allows us to take the already-existing server side validation attributes and
use them to implement client-side validation. We do not have to write a single line of custom

JavaScript code. All we need is the above 3 script files in the order specified. How does client side
validation work in ASP.NET Core ASP.NET Core tag helpers work in combination with the model
validation attributes and generate the following HTML. Notice in the generated HTML we have data-
* attributes.

[input id="Email" name="Email" type="email" data-val="true" data-val-required="The Email field is
required." /] The data-* attributes allow us to add extra information to an HTML element. These
data-* attributes carry all the information required to perform the client-side validation. It is the

unobtrusive library (i.e jguery.validate.unobtrusive.js) that reads these data-val attributes and
performs the client side validation.

Bootstrap uses jQuery for JavaScript plugins (like modals, tooltips, etc). However, if you
just use the CSS part of Bootstrap, you don't need jQuery.

Server Side Validation

ASP.NET Core Server Side Validation

User Login
Ermail public class LoginViewModel
1
[Required]
public string Email { get: set; }
pa [Required]
public string Password { get; set; }
1
{

Ramember me

| Login
|

Remote validation

Remote validation allows a controller action method to be called using client side script. This is very
useful when you want to call a server side method without a full page post back.

Checking, if the provided email is already taken by another user can only be done on the server
Remote validation allows a controller action method to be called using client side script

Client Side scripts required in this order

<script src="~/1lib/jquery/jquery.js"></script>
<script src="~/1lib/jquery-validate/jquery.validate.js"></script>
<script src="~/1lib/jquery-validation-unobtrusive

|public class RegisterViewvode]

{
[Remote{action: "IsEmaillnUse”, controller: "Account™)]
public string Email { jet; set; }
/ Other Properties
}

[AcceptVerbs("Get™, “Post")] \\\\

public async Task<IActionResult> IsEmalilInUse(string email)

{
var user = await userManager.FindByEmailAsyne(email);
if (user == null)
{
return Json(trusg);
}
else
i
return Jsen{f"Email {email} is already in use.");
}
i

string email e najverojatno name na input tagot

Custom validation attribute

Custom Validation Attribute Example

public class RegistervViewModsl

{
[ValidEmailDomain{allowedDomain: “pragimtech.com™,
ErrorMessage ="Email Bgmain must be pragimtech.cem™}]
public string Email { get; 2at; }
}

lﬂublic clazsz ValidEmailDomainAttribute : WlidationAttribite

{
private readonly string allowedDomain;
public ValidemailDomainAttribute(string allowedDomain)
{
this.allowedDomain = allowedDomain;
¥
public override bool IsValid{object value)
i
string[] strings = value.ToString().Split{'E');
return strings[1].ToUpper(} == allowedDomain.ToUpper();
e
k

ErrorMessage postoi vo ValitadioAttribute kako public i se nadleduva
object value doaga od input filed za Email bidejki atributot e na email

Application Vulnerability

Open Redirect
Open Redirect Vulnerability Example

» The user is tricked into clicking a link in an email where
the returnUrl is set to the attackers website

http/ /example.com/account/Togin?returnUri=http/ /exampie_ com/account/login

» The user logs in successfully on the authentic site and he
is then redirected to the attackers website

» The user logs in again on the attackers website, thinking
that the first login attempt was unsuccessful

» The user is then redirected back to the authentic site

> During this entire process, the user does not know his
credentials are stolen

Prevent Open Redirect Attacks

public IActionResult Legin(string returnlrl)

{
¥

return LocalRedirect({returnUrl);

OR

public IActionResult Login(string returnUrl)
{
if (Url.IsLocalUrl{returnlrl))

1{
return Redirect(returnlrl);
j
else
{
return RedirectToAction("index", “home™);
hy

Api Authentication and Authorization with JSON Web Token(JWT)

1.install
Microsoft.AspNetCore.Authentication.JwtBearer

2.

services.AddAuthentication()

.AddCookie(); //must be called for coookie explicitly if services.AddAuthentication() is used
.AddJwtBearer(cfg => {

cfg.TokenValidationParameters = new TokenValidationParameters() {

Validatelssuer = true,

Validlssuer = _config["Security:Tokens:lssuer"],

ValidateAudience = true,

ValidAudience = _config["Security:Tokens:Audience"],

ValidatelssuerSigningKey = true,

IssuerSigningKey = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(_config["Security:Tokens:Key"1)), }; });

Issuer - is the principal that has issued JWT. If token has different issuer than expected, the
validation will fail and caller will receive 401 unauthorized.

Audience - is the recipient that JWT is intended for. If token contains different audience
than expected, the validation will fail and caller will receive 401 unauthorized.

Signing Key, is the key you use for signing the token.

Validatelssuer - Gets or sets a value indicating whether the Issuer should be validated. True
means Yes validation required.

ValidateAudience - Gets or sets a boolean to control if the audience will be validated during
token validation.

var claims = new[]

{

new Claim(JwtRegisteredClaimNames.Sub, "Max John"),
new Claim(JwtRegisteredClaimNames.Jti, Guid.NewGuid().ToString()),

1

var key = new
SymmetricSecurityKey(Encoding.UTF8.GetBytes(configuration["Security:Tokens:Key"]));
var creds = new SigningCredentials(key, SecurityAlgorithms.HmacSha256);

var token = new JwtSecurityToken(configuration["Security:Tokens:Issuer"],
configuration["Security:Tokens:Audience"],
claims,
expires: DateTime.Now.AddMinutes(390),
signingCredentials: creds);

var tokenText = new JwtSecurityTokenHandler().WriteToken(token);
//tokenot treba da bide poveke od 16 karakteri

return Ok(tokenText);

Authorization Bearer eyJhbGciOijlUzI1NilsInRScCI6IkpXVC]9.ey...

Basics (Claims/Claimsldentity/ClaimsPrincipal/Authorization)
HttpContet.SignlnAsync setup the cookie

public async Task<IActionResult> kg;;g(string txtUserName,string txtPassword)

{
if((txtPassword.ToLower()=="admin") && (txtPassword == "123"))
{
var claims = new List<Claim>
{
new Claim(ClaimTypes.Name,txtUserName)
L
var identity = new ClaimsIdentity(
claims,CookieAuthenticationDefaults.AuthenticationScheme);

var principal = new ClaimsPrincipal(identity);

var props = new AuthenticationProperties();
HttpContext.SignInAsync(CookiefuthenticationDefaults.AuthenticationScheme,principal, props).Wait();
return RedirectToAction|

grandmaldentity

licenseldentity

userPrincipal

HttpCont

External identity providers in asp.net core

Most people these days have accounts already created with third party applications like
Microsoft, Google, Facebook, Twitter etc. Why do these users have to create yet another
account with our application. It's not a great user experience to ask the user to create yet
another user account just to login to our application. We want to reuse their existing user
account with Facebook, Google, Microsoft, Twitter etc.

We trust these third party applications and use them to authenticate and identify who the user
is. For this reason these third party applications are commonly called trusted identity
providers. To be more accurate, we call them trusted external identity providers, as these
third party applications are external to our own application. Windows authentication can also be
used as an external identity provider.

Allowing users to reuse their existing accounts to log into our application benefits end users
from having to remember yet another username and password. It also benefits us as application
developers as we no longer have to store and maintain the highly sensitive information such as
the username and password in our application database. It is now the responsibility of the
external authentication provider such as Facebook or Google for example.

Asp.net core has built-in support for integrating these external authentication providers.
Integrating these external authentication providers follows a similar pattern. If we understand
how to integrate one of the external authentication providers, implementing others is not that
different.

These are all different ways of essentially authenticating the same user. We are just providing
him/her different options to login to our application. When a given user logs in using these
different authentication providers we do not want to end up creating multiple accounts for that
same user. We have to associate these different ways of logging in, to the same user account in
our application. We will discuss how to do this in our upcoming videos as we progress in this
course.

How external identity providers work in asp.net core
Google

If a user wants to use his/her Google account to signin to our application, they click
the Google button.

Log in

Use a local account to log in. Use another service to log in.
Password

Remember me?

Our application then redirects the user to Google signin page. Here the user provides his/her
google login credentials.

] g ifi i [i
Our Signin
App"ﬂatiﬂn 1 Continue to Employees Managaement
G sign in with Google Email or phoni
Forgot email?

F

villl share your name, email sddness,

ot and prodile pleture with Emiployes

Upon a successful login, google will then send the user back to our application and a pre-
configured callback function is executed. The code in this callback function checks the identity
received from the external identity provider and sign-in that user into our application. We will see
all this in action in our upcoming videos.

To use an external identity provider like Google, we have to first register our application with

Google. Upon successful registration we will be provided with Client Id and Client Secret which
we need to use Google authentication.

Step 1 : Create a project if you do not have one
already

= Go gle Select a project -

Click on Select a project dropdownlist and then, click New Project link in the popup window that
appears. Give your project a meaningful name and then click Create. It takes a few seconds to
create the project.

New Project

You have 10 projects remaining in your quoia. Request an increase or
delete projects. Learn mare

MANAGE QUOTAS

Project name *
Employee Mgmt Project (7]

Froject 10: employee-momi-project. It cannot be changed later. EDIT

Location *
Bh No organization BROWSE

Parent arganization or folder

CREATE CANCEL

Step 2 : Enable Google+ API

= Google APls Selectaproject w
API APIs & Services Da:

e Dashbhoard

W Library

O Credentials

i Oauth consent screen
Domain verification

= Fage usage agreements

Click on the Library tab on the left and search for Googleplus API and enable it.

Google+ API
Google

The Google+ AP enables developers to
platform.

m TRY THIS API [

Step 3 : Configure OAuth consent screen

Click on the OAuth consent screen tab on the left. If you do not see OAuth consent screen tab,
click on Google APIs banner image on the top left hand corner.

Google APIs [a Employe

API APlIs & Services

«3» Dashboard
W Library

O Credentials

e Oauth consent screen

Domain verification
Sa Fage usage agresments

On the OAuth consent screen, the only required field is the Application name. This is the name
that will be shown to end users asking for their consent.

If this is not entirely clear at the moment, please do not worry. In our upcoming videos, when we
actually integrate google authentication and see the consent screen in action it will be much
clear at that point.

Step 4 : Create OAuth client credentials

Click on the Credentials tab on the left navigation menu.

API APIs & Services

3 Dashboard

o Library

O Credentials

i OAuth consent screen

Domain verification

= Page usage agreements

On the subsequent page, click Create credentials button. From the dropdownlist, select OAuth
client ID.

APIs
Credentials

You need credentials to sccess APl Enable the APls vou plan to
use and then create the credentials they require. Depending on the
AP you need an AP kay, 3 service account, or an DAuth 2.0 client

|Dn For more information, see the authentication documentation.

Create credentials -

APl key
|dentifies your project using a simple AP key to check guota and acoess

Cauth client 1D
Requests user consent 5o your agpe can access the user's data

Service account key
Enables serverio-server, app-level authentication using robot accounts

Help me choose
Asks a few questions 1o help you decide which type of credential to use

On the next screen (i.e Create OAuth client ID)

o Select Web application as the Application type
. Provide a meaningful name for the OAuth client.
. Authorized JavaScript origins - This is the URL of where our application is running. To

get this URL, on your localhost, right click on the project name in Solution Explorer in Visual
Studio and select Properties. On the Debug tab, you will find the App URL.

o Authorized redirect URIs - This is the path in our application that users are redirected
to after they are authenticated by Google. The default path in asp.net core is signin-google. So
the complete redirect URI is Application Root URI/signin-google. If we do not like this default
path signin-google we can change it. We will discuss how to do this in our next video, when we
discuss integrating google authentication into our asp.net core application.

For applications that use the OAuth 2.0 protocol to call Google APLs, yor
generate an access token. The token contains a unigue identifier. See S5

Application type
@ Web application 1
Android Learn more

Chrome App Leam more
i0S Leam mora
Other

Mame

' Employee Mgmt Client | 2

Restrictions

Emter JavaScript origing, redirect URIs, or both Leamn More

Origins and redirect domains must be added to the list of Authorized Domains
Authorized JavaScript origins
For use with requests from a browser. This is the origin URI of the client 5
{https:/f* example.com) or a path (httpsyVexample_com/subdir). If you're
in tha arigin URL.

' hitps://localhost:44385 | 3
Type inthe domain and press sesse-dd it
Authorized redirect URls

For use with requests from a web server. This is the path in your applicatit
authenticated with Google. The path will be appended with the authorizati

Cannot contain URL fragments or relative pagee—=amgot be a public IP ad:
I httpa;fﬁncaltmstddﬂﬁﬁfsigrﬂh—gmgi&

Enable Google Authentication in ASP.NET Core

Include the following configuration in ConfigureServices() method of the Startup class. We
discussed registering our application with Google and obtaining Client Id and Secret in

our previous video.

https://youtu.be/V4KqpIX6pdI

The code required for Google authentication including this AddGoogle() method is present
in Microsoft. AspNetCore.Authentication.Google nuget package. Since | am using ASP.NET
Core 2.2, this package is automatically included in the project as part of the meta package. If
you are using older versions of ASP.NET Core you have to manually install this nuget package.
public class LoginViewModel
{

[Required]

[EmailAddress]

public string Email { get; set; }

[Required]
[DataType(DataType.Password)]
public string Password { get; set; }

[Display(Name = "Remember me")]
public bool RememberMe { get; set; }

public string ReturnUrl { get; set; }

/I AuthenticationScheme is in Microsoft.AspNetCore.Authentication namespace
public IList<AuthenticationScheme> ExternalLogins { get; set; }

HttpGet]
[AllowAnonymous]
public async Task<|ActionResult> Login(string returnUrl)
{
LoginViewModel model = new LoginViewModel
{
ReturnUrl = returnUrl,
ExternalLogins =
(await signinManager.GetExternalAuthenticationSchemesAsync()). ToList()

|»

return View(model);

}
ReturnUrl is the URL the user was trying to access before authentication. We preserve and
pass it between requests using ReturnUrl property, so the user can be redirected to that URL

upon successful authentication.

ExternalLogins property stores the list of external logins (like Facebook, Google etc) that are

enabled in our application. You will better understand what this property does in just a bit, when
we actually use it.

Login Action in AccountController

. Populate ReturnUrl and ExternalLogins properties of LoginViewModel and then pass the
instance to the view.

. GetExternalAuthenticationSchemesAsync() method of SigninManager service, returns
the list of all configured external identity providers like (Google, Facebook etc).

o At the moment we only have one external identity provider configured and that is
Google.

Login Page (Login.cshtml)
The following is the code specific to external login.

<h1>External Login</h1>
<hr />

@{
if (Model.ExternalLogins.Count == 0)

{

<div>No external logins configured</div>

}

else
{
<form method="post" asp-action="ExternalLogin" asp-route-
returnUrl="@Model.ReturnUr|">
<div>
@foreach (var provider in Model.ExternalLogins)

<button type="submit" class="btn btn-primary"
name="provider" value="@provider.Name"
titte="Log in using your @provider.DisplayName account">

@provider.DisplayName
</button>
}
</div>
</form>
}
}

o We are looping through each external login provider we have in Model.ExternalLogins
o For each external login provider a submit button is dynamically generated
o At the moment we only have one external identity provider configured and that is

Google, so we get one Submit button.

o This submit button is inside a form. The form method attribute value is post and asp-
action attribute value is ExternalLogin

. So when the submit button is clicked the form is posted to ExternalLogin action

in AccountController

. The login provider is Google, so in the foreach loop, provider.Name returns Google.

. Since the button name is set to provider, asp.net core model binding maps the provider

name which is Google to provider parameter on the ExternalLogin action.

ExternalLogin action in AccountController

Upon successful authentication, Google redirects the user back to our application and the
following ExternalLoginCallback action is executed.

return View("Error");

}
}

Facebook
Step 1 : Log into https://developers.facebook.com

Step 2 : Click on My Apps dropdown and click Create App button

Step 3 : Create a New App ID

Specify a display name for the client application. This is the name that is displayed on the
consent screen. The email associated with your Facebook account is in the Contact
Email textbox. Click Create App ID button to create the app.

https://developers.facebook.com/

Create a New App ID

Get staried integrating Facebook into your app or website

Display Name

Employee Mgmt Client

Contact Email

pragimtest@agmail.com

Cancel Create App ID

Step 4 : Click Setup button the Facebook Login product

Facebook Login

The world's number one social login product.

Read Docs SetUp

Step 5 : Click on the Settings tab under Facebook Login on the left navigation menu

Emplioyee Mgmt Client w

Dashboard

£+ Settings b
H) Roles »
& Alerts »
@ App Review b

PRODUCTS (%)

() Facebook Login -

Settings

Quickstart

Step 6 : Enable Client OAuth Login.

Also specify Valid OAuth Redirect URI. This is the URI at which your application is hosted. To
this URI append that path segment /signin-facebook. Finally click Save Changes.

Client OCAuth Settings

Client OAuth Login

¥, = :
== Enabies the standard CJuth client token flow.
which token redirect URIs are allowed with the
Web CAuth Login
Yes

Enables web-based Client CAuth Login. [?]

Force Web OAuth Reauthentication
When on, prompts people to enter their
Facebook password in order to log in on the
web. [7]

Mo

Lize Strict Mode for Redirect URIs
Oniy atlow redirects that use the Facebook SO
recommended. [?]

Valid QAuth Redirect URIs

| hitps:/locaihost 4437 6/signin-facebook - |

Step 7 : On the left navigaton menu, click on the Basic tab under Settings to obtain App
ID and App Secret

Employee Mgmt Client w

Dashboard

£+ Settings v

Basic

Advanced

Roles []

Alerts]

e 2

App Review 3

We need this App ID and App Secret to integrate Facebook authentication in our asp.net core
application.

Enable Google authentication in ASP.NET Core

We configure and enable Google authentication in ConfigureServices() method of Startup class

We use AddGoogle() extension method to configure Google authentication in ASP.NET Core

Enable Facebook authentication in ASP.NET Core

Just like AddGoogle(), we have AddFacebook() extension method to configure Facebook
authentication in ASP.NET core.

Login View

Since we have both Google and Facebook authentication integrated, we see the respective
external login provider button automatically displayed on the Login view.

Local Account Login External Login
Password

! Remember me

Redirect request to Facebook

When the Facebook button is clicked, our asp.net core application must redirect the request to
Facebook for authentication. This is done by ExternalLogin() action in AccountController. The
code in this method is written in a generic way, so it works for both Google and Facebook

authentication.

Handle External Login Information received from
Facebook

After the user is successfully authenticated by Facebook, the request is redirected back to our
application, and the following ExternalLoginCallback() action in AccountController is executed.
The code in this method is also written in a generic way, so it works for both Google and
Facebook authentication.

Linking external accounts to a local user account

In this example, the user with email (PragimTest@gmail.com) has an account with both
Facebook and Google. He can use either of these external accounts to log into our application.

Google
Praimlest@gmail.com

Our App
Praimlest@gmail.com
One Local Account

Facebook
Praimiest@gmail.com

We want to link both these external accounts (Facebook and Google) to the same local account

in our asp.net core application. Local user accounts are in AspNetUsers table and external login
accounts are in AspNetUserLogins table.

Notice, for the user with email (PragimTest@gmail.com), there are 2 rows
in AspNetUserLogins table. One row is for the Facebook login and the other for Google login.
Both these rows link to the one row in AspNetUsers table.

Local User Account

AspNetUsers
Id

Email
db65bafd-1bf5-48e9-a218-delalbldd3lc |PragimTest@gmail.com

AspNetUserlLogins
|LoginProvider | ProviderKey Userld
Facebook 67850 db65bal8-1bf5-48e9-a218-4e0a2b2dd31c
Google 12345 d665baf8-1bi5-48e9-a218-defalbiddilc

BExtemnal Login Accounts

User Secrets
The main use of Secret Manager is to keep production secrets like database connection strings,
API and encryption keys out of source control.

Why you should not store secrets in configuration
files

We usually store database connection strings, third party service credentials, APl and
encryption keys in configuration files like web.config in class asp.net and appSettings.json in
asp.net core.

These configuration files are part of the project. So when they are committed to the source
control repository, everyone who has access to the repository will have access to the sensitive
data in these files and could be misused.

From security standpoint, it is not a good idea, to store passwords or other sensitive data in
configuration files or source code.

Use of Secret Manager

Secret Manager allows developers to store and retrieve sensitive data during the development
of an ASP.NET Core application. It stores sensitive data i.e user secrets in a file with
name secrets.json.

To add this file to your project, right click on the project name in Solution Explorer in Visual
Studio and select Manage User Secrets from the context menu. This adds secrets.json file.

The structure of this file is similar to appSettings.json. The important point to keep in mind
is, this file is not part of the project folder. It is located outside of the project folder at the
following path.

C:\Users\{UserNamehAppData\Roaming\Microsoft\UserSecrets\{ID}

. {UserName} is the windows user name that you use to log into the computer.

. {ID} is a GUID (Globally Unique Identifier)

On a single computer you may have multiple asp.net core projects and a secrets.json file for
each project. It is this GUID, that links a given secrets.json file to a given asp.net core project.
To establish this link, UserSecretsld node is included in the .csproj file.

A given secrets.json file can be shared by multiple projects

Using Secret Manager to store database connection
string
From best practices standpoint, we do not want to store database connecting strings anymore

in appSettings.json file. So, move the following database connection string
from appSettings.json file to secrets.json file.

Access secrets from Secrets.json file

In ASP.NET Core application configuration settings can come from different configuration
sources like

appsettings.json

User secrets

Environment variables

4. Command-line arguments

We discussed appSettings.json file in Part 9 and Environment variables in Part 14 of ASP.NET
Core tutorial.

W N =

Out of the box, IConfiguration service is setup to read configuration information from all the
various configuration sources in asp.net core. For example, to read the database connection
string from secrets.json file, inject and use |Configuration service.

https://www.youtube.com/watch?v=m_BevGi7zBw
https://www.youtube.com/watch?v=x8jNX1nb_og
https://www.youtube.com/playlist?list=PL6n9fhu94yhVkdrusLaQsfERmL_Jh4XmU
https://www.youtube.com/playlist?list=PL6n9fhu94yhVkdrusLaQsfERmL_Jh4XmU

Please note that, if you have a configuration setting with the same key in multiple configuration
sources, the later configuration sources override the earlier configuration sources

CreateDefaultBuilder() method of the \WebHost class which is automatically invoked when the
application starts, reads the configuration sources in a specific order. To see the order in which
the configuration sources are read, please check out ConfigureAppConfiguration() method on
the following link
https://github.com/aspnet/MetaPackages/blob/release/2.2/src/Microsoft. AspNetCore/WWebHost.c
s

User secrets in production

To protect sensitive data, secrets.json file is deliberately kept outside of the project folder. This
file is not checked into source control repository. This means secrets.json file is not copied onto
the production server, when we actually build and deploy. So, where will the application find
database connection string.

Well, on a production server store the database connection string in an environment variable. If
you remember, |IConfiguration service is setup to read configuration information from all the
following configuration sources.

o appsettings.json

o User secrets

o Environment variables

. Command-line argument

This means, in spite of not having secrets.json file on the production server, our application
should work just fine because it will find the required database connection string in the

https://github.com/aspnet/MetaPackages/blob/release/2.2/src/Microsoft.AspNetCore/WebHost.cs
https://github.com/aspnet/MetaPackages/blob/release/2.2/src/Microsoft.AspNetCore/WebHost.cs

environment variable.

Secret Manager isn't for staging or production server, it should only be used on development
machine. For production always use either environment variables, Azure Key Vault, or 3rd party
production secret management system.

Email Confirmation

If email address is not confirmed and if the user tries to login we want to display the validation
error - Email not confirmed yet

Local Account Login External Login

» Email not confirmed vet

Email
pragim@pragimtech.com

Password

Remember me

In ASP.NET core, application users are stored in AspNetUsers table. EmailConfirmed column in
this table is used to determine if a given email address is confirmed.

Id Username Email EmailConfirmed |Other Columns...
69d47 |abc@test.com |abc@test.com 0
45g89 [test@test.com |test@test.com 0
32h78 |mary@test.com |mary@test.com 1

In this video we will discuss how to block a login if email address is not confirmed and in our
next video we will implement email confirmation.

In ConfigureServices() method of the Startup class, set RequireConfirmedEmail property to true.

Let's say RequireConfirmedEmail property is set to true and the email address is not
confirmed yet. If we now use the SigninManager service PasswordSigninAsync() method to
sign-in the user we get NotAllowed as the result, even if we supply the correct username and
password.

The same is true with ExternalLoginSigninAsync() method of SigninManager service. We

use ExternalLoginSigninAsync() method to sign-in the user using an external login provider like
Facebook, Google etc. If the email address associated with external login account is not
confirmed, signin result will be NotAllowed.

The following Login action in AccountController, blocks the login and displays Email not
confirmed yet error.

This error message is displayed only, if the Email is not confirmed AND the user has provided
correct username and password.

If you are wondering, why do we need to check if the user has provided correct username and
password. Well, this is to avoid account enumeration and brute force attacks.

Let's understand, what might happen if we display this validation message - Email not confirmed
yet, without checking if the provided email address and password combination is correct. An
attacker might try random emails and as soon as he sees the message, Email not confirmed
yet, he knows this is a valid email that could be used to login. He waits for couple of days until
the email is confirmed by the actual owner, and can then try random passwords with that email
address to gain access.

In order to avoid these types of account enumeration and brute force attacks, display the
validation error, only upon providing the correct email address and password combination.

We also want to block the login if an external login account (like Facebook, Google etc) is used
and the email address associated with that external account is not confirmed. The section that
blocks the login is commented.

/I Get the email claim from external login provider (Google, Facebook etc)
var email = info.Principal.FindFirstValue(ClaimTypes.Email);
ApplicationUser user = null;

if (email != null

await userManager.AddLoginAsync(user, info);
await signlnManager.SignInAsync(user, isPersistent: false);

return LocalRedirect(returnUrl);

}

ViewBag.ErrorTitle = $"Email claim not received from: {info.LoginProvider}";
ViewBag.ErrorMessage = "Please contact support on Pragim@PragimTech.com";

return View("Error");

}
}

Please note : With the external login the user does not provide username and password to our
application. Upon successful authentication, the user is redirected to

the ExternalLoginCallback() action in our application. So we know the user is already
authenticated and hence we display the validation error - Email not confirmed, without the need
to check if the provided username and password combination is correct.

Generate email confirmation token in asp.net core

In ASP.NET core generating email confirmation token is straight forward.
Use UserManager service GenerateEmailConfirmationTokenAsync() method. This method
takes one parameter. The user for whom we want to generate the email confirmation token.

var token = await userManager.GenerateEmailConfirmationTokenAsync(user);

Build the email confirmation link

Once we have the token generated, build the email confirmation link. The user simply clicks this
link to confirm his email. This link executes, ConfirmEmail action in Account controller. The user
ID and the email confirmation token are passed in the query string. Model binding in ASP.NET
core maps the values from the query string parameters to the respective parameters on

the ConfirmEmail action.

var confirmationLink = Url.Action("ConfirmEmail", "Account",
new { userld = user.Id, token = token }, Request.Scheme);

The generated confirmation link would look like the following

https://localhost:44304/Account/ConfirmEmail?userld=987009e3-7f78-445e-8bb8-
4400ba886550&token=CfDJ8Hpirs

The last parameter Request.Scheme returns the request protocol such as Http or Https. This
parameter is required to generate the full absolute URL. If this parameter is not specified, a

relative URL like the following will be generated.

Confirming the email

Use ConfirmEmailAsync() method of the UserManager service to confirm the email. To this
method we pass 2 parameters. The user whose email we want to confirm and them email
confirmation token. Upon successful email confirmation, this method

sets EmailConfirmed column to True in AspNetUsers table.

Add ASP.NET core default token providers

In ConfigureServices() method of the Startup class, call AddDefaultTokenProviders() method to
add the asp.net core default token providers that generate tokens for email confirmation,
password reset, two factor authentication etc.

You should add, either the default token providers or your own custom token providers that can
generate tokens. Otherwise you would get the following runtime exception.

Register and ConfirmEmail actions

ConfirmEmail View

External login email confirmation in asp net core

we will discuss how to confirm the email received from external login providers such as
Google, Facebook etc.

When we use external providers like Google or Facebook to login, we receive the user email
from these external login provider. We then use this email to create a local user account.
Upon creating a local user account, send email confirmation link. If the email address is not

confirmed, do not allow the user to login and display the error - Email not confirmed yet.

On the other hand, if the email address is confirmed, create an external login
(AspNetUserLogins) and sign-in the user.

External Login Providers - Google, Facebook

Email Claim - Create Local Account (AspNetUsers table)

Send confirmation email
If email NOT confirmed if email confirmed

Error - Email NOT confirmed Create External Login (AspNetUserLogins)

Sign-in user

[AllowAnonymous]
public async Task<lActionResult>
ExternalLoginCallback(string returnUrl = null, string remoteError = null)

{

returnUrl = returnUrl ?? Url.Content("~/");
LoginViewModel loginViewModel = new LoginViewModel

ReturnUrl = returnUrl,
ExternalLogins =
(await signinManager.GetExternalAuthenticationSchemesAsync()). ToList()

%

if (remoteError != null)

ModelState.AddModelError(string.Empty,
$"Error from external provider: {remoteError}");

return View("Login", loginViewModel);

}

var info = await signinManager.GetExternallLoginlnfoAsync();
if (info == null)

{
ModelState.AddModelError(string.Empty,

"Error loading external login information.");

return View("Login", loginViewModel);

}

var email = info.Principal.FindFirstValue(ClaimTypes.Email);
ApplicationUser user = null;

if (email != null)

Forgot password in asp net core

we will discuss how to implement forgot password functionality in asp.net core mvc.

Forgot Password link

The first step is to include the Forgot Password link on the Login view.

Local Account Login External Login
Password

Remember me

Forgot Password? f—

The following is the HTML for that
<div>

<a asp-action="ForgotPassword">Forgot Password?
</div>

Forgot Password View Model

We just need the user email address to send the password reset link. So
the ForgotPasswordViewModel class contains just one property - Email

namespace EmployeeManagement.ViewModels

{

Forgot Password Action Methods

Include the following HTTP GET and POST ForgotPassword() actions in the Account controller.
The code in the actions is commented and self-explanatory.

Forgot Password View

model

Forgot Password Confirmation View

At this point, run the project. Navigate to /Account/ForgotPassword and provide your registered
email address. Upon submitting the form, the password reset link will be logged to a file and
looks like the following.

https://localhost:44305/Account/ResetPassword?email=pragim@pragimtech.com&token=CfDJ8
HpirsZUXNxBvU8n%?2...

At the moment, if we try to use the password reset link, we get a 404 error. This is because we
do not have ResetPassword() action in the AccountController. We will discuss how to implement
this in our next video.

Passowrd Reset

we will discuss, how to implement password reset functionality in asp.net core. This is
continuation to our previous video Part 115. Please watch Part 115 from asp.net core
tutorial before proceeding.

To be able to reset the user password we need the following

Email,

Password reset token,
New Password and
Confirm Password

wnNn -

The user provides the new password and confirmation password. Email and reset token are in
the password reset link.

Reset Password View Model

https://youtu.be/0W0yAz7fu04
https://youtu.be/0W0yAz7fu04
https://www.youtube.com/playlist?list=PL6n9fhu94yhVkdrusLaQsfERmL_Jh4XmU
https://www.youtube.com/playlist?list=PL6n9fhu94yhVkdrusLaQsfERmL_Jh4XmU

Reset Password View

We are using 2 hidden input fields to store email address and password reset token as we need
them on postback.

model

Reset Password Action Methods

Include the following HTTP GET and POST RestPassword() actions in the AccountController.
The code in these 2 actions is commented and self-explanatory.

Reset Password Confirmation View

<h4>
Your password is reset. Please click <a asp-action="Login">here to login

</h4>

we will understand, how asp.net core generates and validates tokens i.e Password Rest
Token and Email Confirmation Token for example.

We discussed generating and using

o Email Confirmation Token in Parts 113 and 114
o Password Reset Token in Parts 115 and 116

ASP.NET Core built-in UserManager service provides useful methods to generate and validate
these tokens. For example,

To generate Email Confirmation Token, we
use GenerateEmailConfirmationTokenAsync() method
var token = await userManager.GenerateEmailConfirmationTokenAsync(user);

To generate Password Reset Token, we use GeneratePasswordResetTokenAsync() method

var token = await userManager.GeneratePasswordResetTokenAsync(user);

Both these
methods, GenerateEmailConfirmationTokenAsync() and GeneratePasswordResetTokenAsync()
internally calls GenerateUserTokenAsync() method.

ASP.NET Core is open source. So, if you take a look at the UserManager class source code on
their official github page, you will see both these methods

call GenerateUserTokenAsync() method.
https://github.com/aspnet/AspNetCore/blob/release/2.2/src/Identity/Extensions.Core/src/UserMa
nager.cs

https://youtu.be/yRP6C7fhAuE
https://youtu.be/k_q5ZSh07t4
https://youtu.be/0W0yAz7fu04
https://youtu.be/72Eu92ZkgCg
https://github.com/aspnet/AspNetCore/blob/release/2.2/src/Identity/Extensions.Core/src/UserManager.cs
https://github.com/aspnet/AspNetCore/blob/release/2.2/src/Identity/Extensions.Core/src/UserManager.cs

Notice, both these methods call GenerateUserTokenAsync() method.

GenerateUserTokenAsync

GenerateUserTokenAsync

GenerateUserTokenAsync() has 3 parameters.

. The user the token will be for
. The token provider which will actually generate the token
o The token purpose - For example, password reset or email confirmation. Token

generated for a given purpose must be used only for that purpose. For example, an email
confirmation token cannot be used to reset a password.

DataProtectorTokenProvider

Both Email Confirmation Tokens and Password Reset Tokens are generated by the built-
in DataProtectorTokenProvider. The source code of this class is on the following github page
https://github.com/aspnet/Identity/blob/release/2.2/src/Identity/DataProtectionTokenProvider.cs

GenerateAsync() method generates the token and ValidateAsync() method validates the token

DataProtectorTokenProvider GenerateAsync()

As you can see from the code, the generated token contains

o Token Creation Time
o User ID
o Token Purpose

. Security Stamp

https://github.com/aspnet/Identity/blob/release/2.2/src/Identity/DataProtectionTokenProvider.cs

All this data is then encrypted and then base 64 encoded so it can sent over the network.
ASP.NET Core uses Data Protection API (in short DP API) for encryption. Later in this video
series, we will discuss how to use DP API and encrypt our application data like query strings for
example.

DataProtectorTokenProvider ValidateAsync()

As the name implies ValidateAsync() method validates the token. First it is decoded from Base
64 and then decrypted. Decryption is done by the Data Protection API (DP API).

The token creation time is read from the token. To this, the the token life span is added. If this
computed DateTime is less than current UTC DateTime, the token has expired. So the method
returns false. Tokens cannot be used after they have expired. The default token lifespan is one
day. We can change this to meet our application requirements. We will discuss how to do this in
our next video.

The User ID in the token is compared against the User ID the token is being used. If the User
IDs are not equal, the method return false invalidating the token. A token generated for a given
user must only be used by that user.

The purpose from the token is read to make sure it is used for the intended purpose. Token
generated for a purpose must be used only for that purpose. If we try to use it for a different
purpose, token validation fails. For example, if a token is generated for a given user for the
purpose of resetting password, it can be used only by that specific user for resetting his
password. If we try to use it for a different user or purpose, token validation fails. Simply put,
Password Reset Token cannot be used to confirm an email address.

The security stamp in the token is compared with the user current security stamp in the
database. If they are different, the token validation fails.

we will discuss, how to set password reset token lifetime i.e specifying how long the token
will be valid.

This is continuation to our previous video Part 117. Please watch Part 117 from asp.net core
tutorial.

Both, password reset token and email confirmation token are generated by the built-
in DataProtectorTokenProvider class. In our previous video, we discussed in detail, how this
class generates and validates these tokens.

So, it is the DataProtectorTokenProvider class that generates the password reset token. The
token life span is controlled by DataProtectionTokenProviderOptions class. You can see this
yourself, if you look at the source code of DataProtectorTokenProvider class at the following
link.
https://github.com/aspnet/Identity/blob/release/2.2/src/Identity/DataProtectionTokenProvider.cs

The default token life span is 1 day. You can see this yourself if you look at the source code

of DataProtectionTokenProviderOptions class at the following link.
https://github.com/aspnet/Identity/blob/release/2.2/src/ldentity/DataProtectionTokenProviderOpti
ons.cs

From security standpoint, password reset token is a bit sensitive so it make sense to reduce the
time it is valid for. The following code sets the token life span to 5 hours.

https://youtu.be/fOQjWUokhn8
https://youtu.be/fOQjWUokhn8
https://www.youtube.com/playlist?list=PL6n9fhu94yhVkdrusLaQsfERmL_Jh4XmU
https://www.youtube.com/playlist?list=PL6n9fhu94yhVkdrusLaQsfERmL_Jh4XmU
https://youtu.be/fOQjWUokhn8
https://github.com/aspnet/Identity/blob/release/2.2/src/Identity/DataProtectionTokenProvider.cs
https://github.com/aspnet/Identity/blob/release/2.2/src/Identity/DataProtectionTokenProviderOptions.cs
https://github.com/aspnet/Identity/blob/release/2.2/src/Identity/DataProtectionTokenProviderOptions.cs

services.Configure<DataProtectionTokenProviderOptions>(o =>

o.TokenLifespan = TimeSpan.FromHours(5));

The above code, not only sets password reset token life span to 5 hours. It also sets the life
span of all the tokens generated by DataProtectorTokenProvider class to 5 hours. This may not
be the behaviour you want. For example, the email confirmation token is also generated

by DataProtectorTokenProvider class. So this means even the email confirmation token life
span is 5 hours.

In general email confirmation tokens can live a little longer than password reset tokens. For
example, let's say we want to change the life span of email confirmation token to 3 days. To
achieve this we have to create a

custom DataProtectorTokenProvider and DataProtectionTokenProviderOptions.

we will discuss how to set token lifespan for a specific type of token. This is continuation to
our previous video Part 118. Please watch Part 118 from ASP.NET Core tutorial before
proceeding.

The built-in DataProtectorTokenProvider can generate different types of tokens like Email
Confirmation Token, Password Reset Token for example.

The default lifespan for all these token types is 1 day. One way to change the default lifespan is
by using the built-in DataProtectionTokenProviderOptions. This class sets the lifespan of all the
token types to the same value. In the following example to 5 hours. We discussed this in detail
in our previous video.

If you want to set the lifespan of just a specific type of token, you can do so by creating a
custom token provider. For example, let's set the lifespan of email confirmation token type to 3
days.

https://youtu.be/gX6CW8c4Huw
https://youtu.be/gX6CW8c4Huw
https://www.youtube.com/playlist?list=PL6n9fhu94yhVkdrusLaQsfERmL_Jh4XmU

Create custom email confirmation token provider
options

By default, it is the built-in DataProtectionTokenProviderOptions class that controls the token
lifespan of all token types. If you want to set a specific lifespan for just the email confirmation
token type, create a CustomEmailConfirmationTokenProviderOptions class.

Make this custom class inherit from the built-in DataProtectionTokenProviderOptions class.
There are 2 important reasons why we do this.

1. The TokenLifespan property is inherited from the base class and

2. It allows an instance of this class to be passed as an argument to
the DataProtectorTokenProvider class.

Create custom email confirmation token provider

It is the built-in DataProtectorTokenProvider class that generates the email confirmation token.
Our custom provider class gets all the functionality required to generate tokens by inheriting
from the DataProtectorTokenProvider class. We do not have to write any special logic in this
custom provider class to generate tokens. It will be taken care by the

base DataProtectorTokenProvider class. All we need is a constructor which in turn calls the
base class constructor. Our CustomEmailConfirmationTokenProviderOptions instance is passed
to the base class constructor.

Register custom token provider

Change email confirmation token lifespan

we will discuss encryption and decryption with an example in asp.net core.

We will discuss how to encrypt and decrypt route values. The same techniques can be used to
encrypt query strings, database connection strings and other application sensitive data. It is the
Data Protection API (DP API in short), that we will be using for our encryption needs.

Data Protection API (DP API)

O GRTEHTES

Query Strings

Database Connection Strings

Other application sensitive data

Let's understand encrypting route values with an example. To view a specific employee details
the following is the URL we use. The integer value (5) in the URL at the end is the ID of the
employee.

https://localhost:1111/home/details/5

We want to encrypt, so it's not readable.

https://localhost:44376/home/details/CfDJ8J-n2P...

Take a look at the asp.net core DataProtectorTokenProvider class source code
https://github.com/aspnet/Identity/blob/release/2.2/src/Identity/DataProtectionTokenProvider.cs

It is this class that generates email confirmation token, password reset token etc. It is also
responsible for encrypting and decrypting these tokens. We discussed this in detail in Part
117 of asp.net core tutorial.

We use Protect() and Unprotect() methods of IDataProtector interface to encrypt and decrypt
respectively.

https://github.com/aspnet/Identity/blob/release/2.2/src/Identity/DataProtectionTokenProvider.cs
https://youtu.be/fOQjWUokhn8
https://youtu.be/fOQjWUokhn8
https://www.youtube.com/playlist?list=PL6n9fhu94yhVkdrusLaQsfERmL_Jh4XmU

The following are the steps to encrypt and decrypt route values

Create purpose string

This class holds the purpose strings required for encryption and decryption. At the moment we
have, only one, purpose string. We will discuss the use of purpose string in just a bit.

Register purpose string class with DI container

Register the class that contains purpose strings with the asp.net core dependency injection
container. This allows us to inject an instance of this class into any controller throughout our
application. ConfigureServices method is in the Startup class.

Model property to hold encrypted ID

As the name implies, Encryptedld property holds the encrypted employee

id. NotMapped attribute specifies that this property must be excluded from mapping it to a
database table column. NotMapped attribute is

in System.ComponentModel.DataAnnotations.Schema namespace.

IDataProtector Protect and Unprotect methods

IDataProtector is required in the HomeController. In this Index() action we encrypt the employee
id values and in the Details() they are decrypted.

Encrypted ID in View

In the view, bind the Encryptedld to the View action link.

Purpose string in ASP.NET Core

Master or Root Key

IDataProtectionProvider

CreateProtector(“RouteValues”) CreateProtector(“QueryStrings”)

IDataProtector 1 IDataProtector 2

You can think of purpose string as an encryption key. This key is then combined with the master
or root key to generate a unique key. The data that is encrypted by a given combination of
purpose string and root key can only be decrypted by that same combination of keys.

The purpose string is inherent to the security of the data protection system, as it provides
isolation between cryptographic consumers, even if the root keys are the same.

Change Password
we will discuss how to implement change password view in asp.net core MVC.

Change password view example

A logged in user can change his password using the following change password view.

Change Password

Current password
New password

Confirm new password

Why current password is required

This is to make sure it is the actual account owner who is changing the password. Though you
are already logged-in, asking for the current password prevents a malicious from changing
another user password if that user has briefly walked away from the computer or forgot to logout
from a public computer.

UserManager ChangePasswordAsync Method

var result = await userManager.ChangePasswordAsync(user,
model.CurrentPassword, model.NewPassword);

It is the ChangePasswordAsync() method of the UserManager service that we use to change a
logged-in user password. This method takes 3 parameters.

1. The logged-in user whose password is being changed
2. Current password
3. New password

SigninManager RefreshSigninAsync() Method

await signInManager.RefreshSignIinAsync(user);

Call SigninManager service RefreshSigninAsync() method, after the password is successfully
changed. As the name implies, this method refreshes the logged-in user sign-in cookie.

Change Password ViewModel

Change Password View

model

Change Password Confirmation View

HttpGet ChangePassword Action

HttpPost ChangePassword Action

Change password menu item in Layout view

<a class="dropdown-item" asp-controller="Account"
asp-action="ChangePassword">

In this video we will discuss how to set password on a local user account that is linked to an
external login like Google, Facebook etc. This allows the user to login using either the local user
account or an external login.

Let us understand this with an example. If an external login provider like Google or Facebook is
used to login, the Password column will be null for the corresponding local user account

in AspNetUsers table. A local user account is usually linked to an external login using the email
address.

It is possible to add a password for the local account that is linked to an external account. The
obvious benefit of this is that, the user can use either the external login or the local account to
login.

Add password to a local account

To add a password to a local user account that is linked to an external login,

use AddPasswordAsync() method of the UserManager service.
userManager.AddPasswordAsync(user, model.NewPassword);
We pass 2 parameters to this method

. The user object for whom we want to add the password
o The new password

UserManager AddPasswordAsync example
Consider the following local user account in AspNetUsers table

UserName | Email | PasswordHash

PragimTest@gmail.com |PragimTest@gmail.cam |NULL

This local account is linked to my external Google login. So the PasswordHash column is NULL.
We want to set password on the local user account, so we can either use local username and
password or the google account to login. The following is the view that can be used to set the
password.

Add Password

You have used an external account to login and do not have a local
username/password. Simply set a new password if you want to login

using a local account. Use your email as the username.

New password

Confirm new password

Add Password View Model

public class AddPasswordViewModel

{

Add Password View

model

Add Password Confirmation View

AddPassword Actions

Modify the code in HttpGet ChangePassword() action to redirect the user
to AddPassword() action if the user has singed in using an external login account and tries to
change password.

[HttpGet]
public async Task<|ActionResult> ChangePassword()

{

var user = await userManager.GetUserAsync(User);
var userHasPassword = await userManager.HasPasswordAsync(user);

if (luserHasPassword)

{

return RedirectToAction("AddPassword");

}

return View();

What is account lockout

Account lockout is locking (i.e disabling) the account after too many failed logon attempts. Most
banks lock the account after 5 failed attempts. After how many failed attempts, should the
account be locked out, depends on the lockout policy of the company. The number of failed
attempts after which an account should be locked is configurable in asp.net core.

Why should we lock accounts

Account lockout is to prevent attackers from brute-force attempts to guess a user's password.
After certain number of failed logon attempts the account will be temporarily locked for a
specified amount of time. How long the account should be locked is again configurable and we
will see this in action in just a bit.

Let's say we lock the account for 15 minutes after 5 failed logon attempts. After 15 minutes the
user will get another 5 attempts to logon. After 5 failed attempts the account will be locked for
another 15 minutes. So this means, it will take many years for an attacker to successfully crack
the password.

An organisation may also have password change policy, meaning the password must be

changed every 1 or 2 months. So account lockout policy combined with password change policy
makes it extremely difficult for an attacker to brute-force (i.e guess) password and gain access.

Configure account lockout options in asp.net core

Account lockout options are configured in ConfigureServices() method of the Startup class.

MaxFailedAccessAttempts - Specifies the number of failed logon attempts allowed before the
account is locked out. The default is 5.

DefaultLockoutTimeSpan - Specifies the amount of the time the account should be locked. The
default it 5 minutes.

Enable account lockout

Modify the code in Login() action in AccountController to enable account lockout. The code is
commented where required.

Account Locked View

After the account is locked, there are 2 options. Wait for the account lockout time to expire
which in our case is 15 minutes and then try again or request password reset if you have
forgotten the password.

Set lockout end date on successful password reset

If the user is lockedout, password reset can be requested. Upon successful password reset, set
the account lockout end date to current UTC date time, so the user can login with the new
password. Use SetLockoutEndDateAsync() method of the UserManager service for this.

	Selecting the scheme with the Authorize attribute
	[Authorize] attribute means you just need to authenticate(who are you)
	The [Authorize] attribute specifies the authentication scheme or schemes to use regardless of whether a default is configured. For example:
	Selecting the scheme can be done with policies
	Basics (Claims/ClaimsIdentity/ClaimsPrincipal/Authorization)
	External login email confirmation in asp net core
	Forgot password in asp net core

